Implications of Artificial Intelligence in Adaptive Learning Assessment

Autori

  • Giovanni Arduini Università di Cassino e del Lazio Meridionale
  • Leila De Vito Università di Cassino e del Lazio Meridionale

DOI:

https://doi.org/10.32043/jimtlt.v4i1.149

Parole chiave:

apprendimento adattivo, intelligenza artificiale, inclusione, personalizzazione, valutazione adattiva

Abstract

La letteratura scientifica internazionale evidenzia come l’Intelligenza Artificiale in campo educativo sia un settore particolarmente emergente nell’ambito dell’educational technology (Panciroli, Rivoltella, Gabbrielli, Richter, 2020). Il presente studio propone una riflessione sulle potenzialità trasformative dell’Intelligenza Artificiale (IA) nell’ambito della valutazione scolastica degli apprendimenti. Attraverso un’analisi delle caratteristiche dell’IA, si intende individuare i vantaggi tangibili derivanti dalla sua implementazione nel contesto educativo. L’indagine si concentra sull’esplorazione delle possibilità offerte dall’automazione del processo di valutazione e sulla capacità di analisi personalizzata delle prestazioni degli studenti, mettendo in luce le potenzialità degli algoritmi di apprendimento automatico.

Riferimenti bibliografici

Beal C.R., Arroyo I.M., Cohen P.R., Woolf B.P (2010). Evaluation of animal watch: An intelligent tutoring system for arithmetic and fractions. Journal of Interactive Online Learning; 9(1):64–67.

Becker, S. et al. (2018). NMC Horizon Report: 2018 Higher Education Edition, Educause.

Chassignol, M., Khoroshavin, A., Klimova, A., & Bilyatdinova, A. (2018). Artifcial Intelligence trends in education: A narrative overview. Procedia Computer Science, 136, 16–24.

Chen, L., Chen, P., & Lin, Z. (2020). Artificial Intelligence in Education: A Review. IEEE Access, 8, 75264–75278. https://doi.org/10.1109/access.2020.2988510.

Drezewski, R., and Solawa, J. (2021). The application of selected modern artificial intelligence techniques in an exemplary strategy game. Proc. Comput. Sci. 192, 1914–1923. doi: 10.1016/j.procs.2021.08.197.

Galliani, L. (2014). Technology and assessment: bio-bibliography of an integrated story. Editoriale - Numero Speciale. Italian Journal of Educational Research, 11–12.

Groff, J., (2017). Personalized Learning: The state of the field and future directions. Center for curriculum redesign.

Guo, L., Wang, D., Gu, F., Li, Y., Wang, Y., and Zhou, R. (2021). Evolution and trends in intelligent tutoring systems research: a multidisciplinary and scientometric view. Asia Pacific Educ. Rev. 22, 441–461. doi: 10.1007/s12564-021-09697-7.

Holmes, W. Bialik, M. and Fadel, C. (2019). Artificial Intelligence In Education: Promises and Implications for Teaching and Learning. Boston, MA: Center for Curriculum Redesign.

Kurshan, B. (2016). The future of artificial intelligence in education. Forbes Magazine, New York.

Liu, G., Chen, X., Zhou, R., Xu, S., Chen, Y. C., and Chen, G. (2021). Social learning discrete Particle Swarm Optimization based two-stage X-routing for IC design under Intelligent Edge Computing architecture. Appl. Soft Comput. 10, 107215. doi: 10.1016/j.asoc.2021.107215.

Liu, G., Chen, Z., Zhuang, Z., Guo, W., and Chen, G. (2020a). A unified algorithm based on HTS and self-adapting PSO for the construction of octagonal and rectilinear SMT. Soft Comput. 24, 3943–3961. doi: 10.1007/s00500-019-04165-2.

Liu, G., Zhu, W., Xu, S., Zhuang, Z., Chen, Y. C., and Chen, G. (2020b). Efficient VLSI routing algorithm employing novel discrete PSO and multi-stage transformation. J. Ambient Intelligence Hum. Comput. 1–16. doi: 10.1007/s12652-020-02659-8.

Luckin, R. Holmes, W. Griffiths, M. and F., Laurie B. (2016). Intelligence Unleashed: An argument for AI in Education. Pearson Education, London.

Miao, F. Holmes, W. (2021). Artificial Intelligence and Education. Guidance for Policy-makers. United Nations Educational, Scientific and Cultural Organization (UNESCO): Paris, France.

Panciroli C., Rivoltella P.C., Gabbrielli M., Richter O.Z. (2020). Artificial Intelligence and education: new research perspectives. Form@re, 20(3): 1-12.

Shute, V. J. and J. Psotka (1996). Intelligent tutoring systems: past, present and future. In D. Jonassen (Ed.) Handbook of research on educational communications and technology. NY: Macmillan. pp.570-600.

Taylor, D., Yeung, M., Bashet, A.Z., (2021). Personalized and Adaptive Learning, Innovative Learning Environments in STEM Higher Education pp 17–34, SpringerBriefs in Statistics.

UNICEF (2021). Policy guidance on AI for children.

VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artificial Intelligence in Education, 16(3), 227–265.

##submission.downloads##

Pubblicato

2024-06-24

Come citare

Arduini, G., & De Vito, L. (2024). Implications of Artificial Intelligence in Adaptive Learning Assessment. Journal of Inclusive Methodology and Technology in Learning and Teaching, 4(1). https://doi.org/10.32043/jimtlt.v4i1.149