Intelligenza Artificiale e processi educativi secondo ChatGPT
DOI:
https://doi.org/10.32043/jimtlt.v3i1.72Parole chiave:
Intelligenza Artificiale, ChatGPT, Processi Educativi, Ricerca EducativaAbstract
The present work consists of an experiment, in a broad sense, of using an Artificial Intelligence model to define the state of the art on Artificial Intelligence in education. In short, we asked an Artificial Intelligence what Artificial Intelligence is, what are the possible applications in education (and possible critical issues) of Artificial Intelligence and what is the state of the scientific literature on the subject. The work does not claim to provide a systematic review of the scientific literature, but intends to constitute an informed starting point for reflection on the state of the art of the relationship between AI and educational processes, and at the same time explore the possibility of using AI in educational research . More generally, the paper intends to contribute to the ongoing scientific debate on the opportunity to use, and in what capacity, AI in the generation of scientific articles. The ChatGPT interview was conducted in Italian. This, together with other information, allowed the AI to classify the interlocutor as Italian and generated responses relevant to the Italian context, even in the absence of an explicit request. For this reason, it was decided to present the work in Italian.
Il presente lavoro consiste in un esperimento, in senso lato, di utilizzo di un modello di Intelligenza Artificiale per definire lo stato dell’arte sull’Intelligenza Artificiale in ambito educativo. In breve, abbiamo chiesto a un’Intelligenza Artificiale cosa sia l’Intelligenza Artificiale, quali siano le possibili applicazioni in ambito educativo (e le possibili criticità) dell’Intelligenza Artificiale e quale sia lo stato della letteratura scientifica sull’argomento. Il lavoro non ha la pretesa di fornire una revisione sistematica della letteratura scientifica, ma intende costituire uno spunto informato di riflessione sullo stato dell’arte del rapporto tra IA e processi educativi, e contemporaneamente esplorare la possibilità di utilizzare l’IA nella ricerca in educazione. Più in generale, il paper intende contribuire al dibattito scientifico in corso sull’opportunità di utilizzare, e a quale titolo, l’IA nella generazione di articoli scientifici. L’intervista a ChatGPT è stata realizzata in lingua italiana. Questo, insieme ad altre informazioni, ha permesso all’IA di classificare l’interlocutore come italiano ed ha generato risposte pertinenti al contesto italiano, pur in assenza di esplicita richiesta. Per questo motivo, si è ritenuto di presentare il lavoro in lingua italiana.
Riferimenti bibliografici
Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). A brief survey of deep reinforcement learning. arXiv preprint arXiv:1708.05866.
Bengio, Y., Lecun, Y., & Hinton, G. (2021). Deep learning for AI. Communications of the ACM, 64(7), 58-65.
Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4): Springer.
Campitiello, L., Todino, M. D., Di Tore, P. A., & Di Tore, S. (2022). EMOROBOT: AN OPEN-SOURCE ROBOT TO PROMOTE THE DEVELOPMENT OF SOCIAL SKILLS IN CHILDREN WITH AUTISM EMOROBOT: UN ROBOT OPEN-SOURCE PER PROMUOVERE LO SVILUPPO DELLE SOCIAL SKILLS NEI BAMBINI CON AUTISMO. Giornale Italiano di Educazione alla Salute, Sport e Didattica Inclusiva, 6(1).
Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. Ieee Access, 8, 75264-75278.
Chiusaroli, D., & Di Tore, P. A. (2020). EmoTracker: Emotion Recognition between Distance Learning and Special Educational Needs. Giornale Italiano di Educazione alla Salute, Sport e Didattica Inclusiva, 4(4 sup).
Di Tore, P. A., Di Tore, S., & Axelsson, E. P. (2022). Epistemologie Latenti: utilizzo di tecniche di Intelligenza Artificiale, Machine Learning and Text Mining per indagare sulle epistemologie personali dei docenti di sostegno relativamente al concetto di inclusione Una proposta di flusso di lavoro. RTH - Education & Philosophy, 9.
Domingos, P. (2012). A few useful things to know about machine learning. Communications of the ACM, 55(10), 78-87.
Dong, S., Wang, P., & Abbas, K. (2021). A survey on deep learning and its applications. Computer Science Review, 40, 100379.
Eisenstein, J. (2019). Introduction to natural language processing: MIT press.
Else, H. (2023). Abstracts written by ChatGPT fool scientists. Nature.
Flynn, J. R. (2007). What is intelligence?: Beyond the Flynn effect: Cambridge University Press.
Gao, C. A., Howard, F. M., Markov, N. S., Dyer, E. C., Ramesh, S., Luo, Y., & Pearson, A. T. (2022). Comparing scientific abstracts generated by ChatGPT to original abstracts using an artificial intelligence output detector, plagiarism detector, and blinded human reviewers. bioRxiv.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning: MIT press.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., . . . Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139-144.
Grosz, B. J., & Stone, P. (2018). A century-long commitment to assessing artificial intelligence and its impact on society. Communications of the ACM, 61(12), 68-73.
Ingrand, F., & Ghallab, M. (2017). Deliberation for autonomous robots: A survey. Artificial Intelligence, 247, 10-44.
Jaderberg, M., Czarnecki, W. M., Dunning, I., Marris, L., Lever, G., Castaneda, A. G., . . . Ruderman, A. (2019). Human-level performance in 3D multiplayer games with population-based reinforcement learning. Science, 364(6443), 859-865.
Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260.
Jung, M., & Hinds, P. (2018). Robots in the wild: A time for more robust theories of human-robot interaction. In (Vol. 7, pp. 1-5): ACM New York, NY, USA.
Jurafsky, D., & Martin, J. H. (2009). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition: Pearson Prentice Hall.
Kao, Y.-F., & Venkatachalam, R. (2021). Human and machine learning. Computational Economics, 57(3), 889-909.
Khan, T. M., & Robles-Kelly, A. (2020). Machine learning: Quantum vs classical. IEEE Access, 8, 219275-219294.
Kurzweil, R. (2005). The singularity is near: When humans transcend biology: Penguin.
Luger, G. F. (2005). Artificial intelligence: structures and strategies for complex problem solving: Pearson education.
Madhu, M., & WHIG, P. (2022). A survey of machine learning and its applications. International Journal of Machine Learning for Sustainable Development, 4(1), 11-20.
McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. AI magazine, 27(4), 12-12.
McLuhan, M. (2001). Understanding Media: The Extensions of Man: Routledge.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., . . . Ostrovski, G. (2015). Human-level control through deep reinforcement learning. nature, 518(7540), 529-533.
Negnevitsky, M. (2005). Artificial intelligence: a guide to intelligent systems: Pearson education.
Norvig, P., & Russel, S. (2002). A modern approach. Prentice Hall Upper Saddle River, NJ, USA: Rani, M., Nayak, R., & Vyas, OP (2015). An ontology-based adaptive personalized e-learning system, assisted by software agents on cloud storage. Knowledge-Based Systems, 90, 33-48.
Pedro, F., Subosa, M., Rivas, A., & Valverde, P. (2019). Artificial intelligence in education: Challenges and opportunities for sustainable development.
Siegwart, R., Nourbakhsh, I. R., & Scaramuzza, D. (2011). Introduction to autonomous mobile robots: MIT press.
Smith, A., & Anderson, J. (2014). AI, Robotics, and the Future of Jobs. Pew Research Center, 6, 51.
Szeliski, R. (2022). Computer vision: algorithms and applications: Springer Nature.
Thunström, A. O., & Steingrimsson, S. (2022a). Can GPT-3 write an academic paper on itself, with minimal human input?
Thunström, A. O., & Steingrimsson, S. (2022b). Does GPT-3 qualify as a co-author of a scientific paper publishable in peer-review journals according to the ICMJE criteria?-A Case Study.
Turing, A. (1947). COMPUTING MACHINERY AND INTELLIGENCE. Mind, 59(236).
##submission.downloads##
Pubblicato
Come citare
Fascicolo
Sezione
Licenza
Copyright (c) 2023 pio alfredo di tore

Questo lavoro è fornito con la licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale.