Multisensory-Learning-Environments: artificial intelligence for the domotisation and replication of lights and sounds that foster the state of Flow
DOI:
https://doi.org/10.32043/jimtlt.v3i4.115Parole chiave:
Evoluzione digitale, ; Potenziamento; CognizioneAbstract
This contribution aims to create a potential synergy among human, artificial intelligence, and the environment. The objective is to leverage the home automation of multisensory environments through the use of artificial intelligence software, in order to provide a multisensory learning context characterized by customization and calibration in delivering specific stimuli, particularly luminous and auditory stimuli. These stimuli aim to enable the individual to undergo a neurosensory experience that facilitates the achievement of the Flow state. The results related to the physiological activation state, attention levels, and brain activation of the individual, emerging from each experience, will be an integral part of the AI (Artificial Intelligence) software training. This is intended to obtain personalized and calibrated intervention protocols, tailored to the specificity of the users on each occasion.
Riferimenti bibliografici
Alkozei A, Smith R, Dailey NS, Bajaj S, Killgore WDS Acute exposure to blue wavelength light during memory consolidation improves verbal memory performance. PLoS ONE, 2017, 12(9): e0184884. https://doi.org/10.1371/journal.
Beaven CM, Ekström J (2013) A Comparison of Blue Light and Caffeine Effects on Cognitive Function and Alertness in Humans. PLoS ONE 8(10) doi:10.1371/journal.pone.
Cajochen C, Frey S, Anders D, Späti J, Bues M et al. (2011) Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance. J Appl Physiol 110: 1432-1438. doi:10.1152/japplphysiol.00165.2011.
Chellappa SL, Steiner R, Blattner P, Oelhafen P, Götz T et al. (2011) Non-visual effects of light on melatonin, alertness and cognitive performance: can blue-enriched light keep us alert? PLOS ONE 26.
Chen, X., Shi, X., Wu, Y., Zhou, Z., Chen, S., Han, Y., & Shan, C. Gamma oscillations and application of 40‐Hz audiovisual stimulation to improve brain function. Brain and Behavior, 2022, 12(12), e2811.
Chierichetti, C, Lembo, L, Tombolini, E, Cipollone, E, Battaglia, MV, Biancalani, A, Cittadini, A, Mor-sanuto, S. (2023). Design for Children: towards the design of learning environments and objects for Chil-dren. Giornale Italiano di Educazione alla Salute, Sport e Didattica Inclusiva - Italian Journal of Health Education, Sports and Inclusive Didactics. Anno 7, V 2. Supplemento Edizioni Universitarie Romane
Clark, E., Perelmiter, T., Bertone, A. (2023). Understanding the Relationship Between Attention, Executive Functions, and Mathematics: Using a Function-Specific Approach for Understanding and Remediating Mathematics Learning. 10.1007/978-3-031-29195-1_3.
Engelbregt, H., Barmentlo, M., Keeser, D., Pogarell, O., & Deijen, J. B. (2021). Effects of binaural and monaural beat stimulation on attention and EEG. Experimental brain research, 239(9), 2781-2791.
Gross, J., Pollok, B., Dirks, M., Timmermann, L., Butz, M., & Schnitzler, A. (2005). Task-dependent os-cillations during unimanual and bimanual movements in the human primary motor cortex and SMA studied with magnetoencephalography. NeuroImage, 26(1), 91–98. https://doi.org/10. 1016/j.neuroimage.2005.01.025.
Gurtubay, I. G., Alegre, M., Labarga, A., Malanda, A., & Artieda, J. (2004). Gamma band responses to target and non-target auditory stimuli in humans. Neuroscience Letters, 367(1), 6–9. https://doi.org/10.1016/j.neulet.2004.05.104.
https://doi.org/10.1016/j.lmot.2020.101678.
Imperiale, F. (2018). Luce e spazio nei nuovi ambienti di apprendimento. Una proposta progettuale per l'I-stituto Drovetti di Torino= Luce e spazio nei nuovi ambienti di apprendimento. Una proposta progettuale per l’Istituto Drovetti di Torino (Doctoral dissertation, Politecnico di Torino).
Jensen, O., Kaiser, J., & Lachaux, J. P. (2007). Human gamma-frequency oscillations associated with at-tention and memory. Trends in neurosciences, 30(7), 317-324.
Lee, H. & Lee, J., (2021), Applying Artificial Intelligence in Physical Education and Future Perspectives, Sustainability, 13(1), 351, https://doi.org/10.3390/su13010351.
Lembo, L., Cipollone, E., Oliva, P., & Monteleone, S. (2023). Augmented Didactic: wow effect for learning. Use of augmented reality through a qr code to enhance learning processes in undergraduates. Italian journal of health education, sport and inclusive didactics, 7(2).
Mihály Csíkszentmihályi, (1999), Flow Psicologia dell’esperienza ottimale, ROIEDIZIONI, Milano, ISBN 978-88-3620-058-0.
Negara, J. D. K., Mudjianto, S., Budikayanti, A., & Nugraha, A. (2021). The effect of gamma wave opti-mization and attention on hitting skills in softball. Int J Hum Mov Sport Sci, 9(1), 103-9.
Okagbue, E., Ezeachikulo, U., Akintunde, T., Tsakuwa, M., Ilokanulo, S., Obiasoanya, K., Ilodibe, C., Ouattara, C., (2023), A comprehensive overview of artificial intelligence and machine learning in education pedagogy: 21 Years (2000–2021) of research indexed in the scopus database.
Poquet, O., Kitto, K., Jovanovic, J., Dawson, S., Siemens, G., Markauskaite, L., (2021), Transitions through lifelong learning: Implications for learning analytics, Computers and Education: Artificial Intelligence, vol. 2, 100039, ISSN 2666-920X, https://doi.org/10.1016/j.caeai.2021.100039.
Rossetti, M., & Tonetti, A. (2023). Wood Snoezelen. Ambienti multisensoriali in legno per la cura e la riabilitazione di persone con disabilità intellettive= Wood Snoezelen. Multisensory Wooden Environments for the Care and Rehabilitation of People with Intellectual Disabilities. CLUSTER ACCESSIBILITÀ AMBIENTALE, 5, 118-125.
Schmidt TM, Chen SK, Hattar S. (2011) Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci. 34(11):572–580.
Siegel, D. J. (2001). La mente relazionale. Neurobiologia dell’esperienza interpersonale, 72.Social Sciences & Humanities Open, 8(1).
Srinivasan, V. & Murthy, H., (2021), Improving reading and comprehension in K-12: Evidence from a large-scale AI technology intervention in India, Computers and Education: Artificial Intelligence, vol. 2, 100019, ISSN 2666-920X, https://doi.org/10.1016/j.caeai.2021.100019
Tian, Y. & Ou, L., (2023), How do personality traits of college students affect their learning flow expe-rience?, Learning and Motivation, vol. 83, 11017, https://doi.org/10.1016/j.lmot.2023.101917.
Vandewalle, G., Collignon, O., Hull, J. T., Daneault, V., Albouy, G., Lepore, F., ... & Carrier, J. (2013). Blue light stimulates cognitive brain activity in visually blind individuals. Journal of cognitive neuroscience, 25(12), 2072-2085.
Wang, S., Wang, T., Chen, N., Luo, J., (2020), The preconditions and event-related potentials correlates of flow experience in an educational context, Learning and Motivation, vol. 72, 101678
##submission.downloads##
Pubblicato
Come citare
Fascicolo
Sezione
Licenza
Copyright (c) 2024 Arianna Cittadini, Claudia Chierichetti, Luna Lembo, Stefania Morsanuto
Questo lavoro è fornito con la licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale.