The Will, The Skill, The Tool, And The AI. Exploring Factors Affecting Teachers’ Intentions To Use AI And Technologies To Foster Inclusion
DOI:
https://doi.org/10.32043/jimtlt.v4i1.156Parole chiave:
Educational technology; Artificial Intelligence; UTAUT; Support teacher training; Autism Spectrum DisorderAbstract
Il contributo esplora il grado di accettazione e l’intenzionalità dei futuri docenti di sostegno a utilizzare le tecnologie educative con modelli di Intelligenza Artificiale (IA) in classi frequentate da allievi con Disturbo dello Spettro autistico. Tale finalità muove dalla constatazione che negli ultimi anni si sta gradualmente diffondendo l’implementazione in contesti educativi e riabilitativi di tecnologie che favoriscono il processo di apprendimento di questi allievi nell’ambito di diversi domini dello sviluppo. Allo stesso modo, dalla letteratura di riferimento si evince che l’integrazione di tali tecnologie a scuola può essere influenzata da diversi fattori e che, attualmente, esiste un gap nella ricerca riguardo le intenzioni degli insegnanti ad integrare tali tecnologie in classe con gli studenti con ASD. Pertanto, lo studio si propone di esplorare ciò utilizzando come framework teorico di riferimento la Teoria unificata dell’accettazione e dell’uso della tecnologia. Nello specifico è stato somministrato un questionario ai futuri docenti di sostegno iscritti al Corso di specializzazione per le attività di sostegno didattico agli alunni con disabilità VIII ciclo. I risultati evidenziano una predisposizione positiva per l’adozione dell’IA e delle tecnologie, evidenziando in particolare l’importanza della conoscenza dell’IA come fattore correlato alla volontà di impiego in contesti educativi. L’analisi sottolinea altresì il ruolo significativo del valore intrinseco, inteso come esperienza personale piacevole e gratificante derivante dall’uso della tecnologia, come fattore che incide sull’intenzione a adottare e usare sia le tecnologie sia l’IA.
Riferimenti bibliografici
Aiello, P., & Di Gennaro, D. C. (2016). Autismo e digital storytelling. Le storie digitali come dispositivo didattico-educativo. In Autismo: un'altra prospettiva (pp. 219-237). Aracne Editrice.
Aiello, P., & Sharma, U. Improving intentions to teach in inclusive classrooms: the impact of teacher education courses on future Learning Support Teachers. Form@ re-Open Journal per la formazione in rete, 18(1), 207-219 (2018).
Ajzen, I., & Fishbein, M. (1980). Understanding Attitudes and Predicting Social Behavior. Englewood Cliffs, NJ: Prentice Hall.
Al-Gahtani, S. S. Teachers’ readiness to use artificial intelligence in their teaching practices. Education and Information Technologies, 27(1), 1-19 (2022).
Banire, B., Al Thani, D., & Qaraqe, M. (2023). One size does not fit all: detecting attention in children with autism using machine learning. User Modeling and User-Adapted Interaction, 1-33.
Barua, P.D., Vicnesh, J., Gururajan, R., Oh, S. L., Palmer, E., Azizan, M.M., & Acharya, U.R. (2022). Artificial intelligence enabled personalised assistive tools to enhance education of children with neurode-velopmental disorders-a review. International Journal of Environmental Research and Public Health, 19(3), 1192.
Bolte, S., Golan, O., Goodwin, M. S., & Zwaigenbaum, L. (2010). What can innovative technologies do for Autism Spectrum Disorders?. Autism, 14(3), 155-159.
Bonaiuti, G., Campitiello, L., Di Tore, S., & Marras, A. (2022, October). Educational robotics studies in Italian scientific journals: A systematic review. In Frontiers in Education, 7, p. 1005669.
Chen, B., & Zhang, Z. Factors influencing teachers' adoption of artificial intelligence in education: A systematic review. Computers & Education, 178, 104673 (2022).
Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. Ieee Access, 8, 75264-75278.
Costa, A. P., Charpiot, L., Lera, F. R., Ziafati, P., Nazarikhorram, A., Van Der Torre, L., & Steffgen, G. (2018, August). More attention and less repetitive and stereotyped behaviors using a robot with children with autism. In 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) (pp. 534-539). IEEE.
Cottini, L., D'Agostini, M., Enrico, E., Munaro, C., & Pascoletti, S. (2023). Autismo Video Modeling e realtà aumentata. Itinerari inclusivi per un’educazione di qualità. Roma: Carocci.
EADSNE. European Agency for Special Needs and Inclusive Education (2012). Profilo dei Docenti Inclusivi. Odense, Danimarca: European Agency for Special Needs and Inclusive Education.
Elhoweris, H., & Al-Gahtani, S. S. Teachers’ perceptions of the benefits and challenges of using artificial intelligence in education. Education and Information Technologies, 28(2), 1- 20 (2023).
Fishbein, M., & Ajzen, I. (1975) Belief, attitude, intention and behavior: An introduction to theory and research. Reading, MA: Addison-Wesley.
Flogie, A., & Aberšek, B. (2015). Transdisciplinary approach of science, technology, engineering and mathematics education. Journal of Baltic science education, 14(6), 779.
Garg, K., Das, N. N., & Aggrawal, G. (2023, January). A Review On: Autism Spectrum Disorder De-tection by Machine Learning Using Small Video. In 2023 3rd International Conference on Intelligent Communication and Computational Techniques (ICCT) (pp. 1-8). IEEE.
Garg, S., & Sharma, S. (2020). Impact of artificial intelligence in special need education to promote inclusive pedagogy. International Journal of Information and Education Technology, 10(7), 523-527.
Huang, J., Saleh, S., Liu, Y. (2021). A review on artificial intelligence in education. Academic Journal of Interdisciplinary Studies, 10, 3.
Hume, K., Steinbrenner, J. R., Odom, S. L., Morin, K. L., Nowell, S. W., Tomaszewski, B., Szendrey, S., McIntyre, N. S., Yücesoy-Özkan, S., & Savage, M.N. (2021). Evidence-Based Practices for Children, Youth, and Young Adults with Autism: Third Generation Review. Journal of Autism and Developmental Disorders, 0123456789. https://doi.org/10.1007/s10803-020-04844-2
Iavarone, M. L., Aiello, P., Militerni, R., & Sibilio, M. (2017). I" sensi" dell'autismo. Verso un nuovo paradigma in didattica. Form@ re, 17(2).
Istituto Superiore Sanità (ISS), 2023. Raccomandazioni della linea guida sulla diagnosi e sul trattamento del disturbo dello spettro autistico in bambini e adolescenti. Disponibile su: https://www.iss.it/documents/20126/8977108/Linea+Guida+ASD_bambini+e+adolescenti+2023.pdf/e370f693-d569-4490-6d51-8e249cd152b0?t=1696841617387
Keshav, N. U., Salisbury, J. P., Vahabzadeh, A., & Sahin, N. T. (2017). Social communication coaching smartglasses: Well tolerated in a diverse sample of children and adults with autism. JMIR mHealth and uHealth, 5(9), e8534.
Khechine, H., Lakhal, S., Ndjambou, P., & Pascot, D. (2020). A meta-analysis of the UTAUT model: Eleven years later. Canadian Journal of Administrative Sciences / Revue Canadienne des Sciences de l'Administration, 37(2), 195-216
Kim, J. C., Azzi, P., Jeon, M., Howard, A. M., & Park, C. H. (2017, June). Audio-based emotion estimation for interactive robotic therapy for children with autism spectrum disorder. In 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI) (pp. 39-44). IEEE.
Knezek, G., & Christensen, R. (2016). Extending the will, skill, tool model of technology integration: Adding pedagogy as a new model construct. Journal of Computing in Higher Education, 28(3), 307-325.
Knezek, G., Christensen, R., Hancock, R., & Shoho, A. (2000, February). Toward a structural model of technology integration. In Proceedings of the Annual Hawaii Educational Research Association.
Kopcha, T. J. (2012). Teachers' perceptions of the barriers to technology integration and practices with technology under situated professional development. Computers & Education, 59(4), 1109-1121.
Kouroupa, A., Laws, K. R., Irvine, K., Mengoni, S. E., Baird, A., & Sharma, S. (2022). The use of social robots with children and young people on the autism spectrum: A systematic review and meta-analysis. Plos one, 17(6), e0269800.
Lampos, V., Mintz, J., & Qu, X. (2021). An artificial intelligence approach for selecting effective teacher communication strategies in autism education. NPJ Science of Learning, 6(1), 25.
Li, L., Chen, C. P., Wang, L., Liang, K., & Bao, W. (2023). Exploring Artificial Intelligence in Smart Education: Real-Time Classroom Behavior Analysis with Embedded Devices. Sustainability, 15(10), 7940.
Liaw, S. S., & Huang, H. M. Teachers’ intention to use artificial intelligence in education: A meta-analysis. Educational Technology Research and Development, 69 (6), 3611-3634 (2021).
Liu, R., Salisbury, J. P., Vahabzadeh, A., & Sahin, N. T. (2017). Feasibility of an autism-focused aug-mented reality smartglasses system for social communication and behavioral coaching. Frontiers in pediatrics, 5, 145.
Maras, K., Gamble, T., & Brosnan, M. (2019). Supporting metacognitive monitoring in mathematics learning for young people with autism spectrum disorder: A classroom-based study. Autism, 23(1), 60-70.
Mazurek, M.O., Shattuck, P.T., Wagner, M., & Cooper, B.P. (2012). Prevalence and correlates of screen-based media use among youths with autism spectrum disorders. Journal of autism and developmental disorders, 42, 1757-1767.
McCarthy, E., & O'Connor, R. (2022). Teachers' attitudes towards the use of artificial intelligence in education: A systematic review. Educational Technology & Society, 25(3), 31-48
Miao, F., & Holmes, W. (2023). Guidance for generative AI in education and research. Paris: United Nations Educational, Scientific and Cultural Organization.
Miao, F., Holmes, W., Ronghuai, H., & Hui, Z. (2021). AI and education: guidance for policy-makers. Paris: United Nations Educational, Scientific and Cultural Organization. https://doi.org/10.54675/PCSP7350
Nazaretsky, T., Ariely, M., Cukurova, M., & Alexandron, G. (2022). Teachers’ trust in AI-powered ed-ucational technology and a professional development program to improve it. British Journal of Educational Technology, 53(5), 914-931. https://doi.org/10.1111/bjet.13232
Nazari, A., Höhn, S., Paikan, A., & Ziafati, P. (2023, September). Receptive Language Development Diagnosis and Tracking in Conversational Interactions with QTrobot for Autism. In Proceedings of the First Workshop on Connecting Multiple Disciplines to AI Techniques in Interaction-centric Autism Research and Diagnosis (ICARD 2023) (pp. 12-16).
Odom, S. L., Thompson, J. L., Hedges, S., Boyd, B. A., Dykstra, J. R., Duda, M. A., Szidon, K.L., Smith, L.E., & Bord, A. (2015). Technology-aided interventions and instruction for adolescents with autism spec-trum disorder. Journal of autism and developmental disorders, 45(12), 3805-3819.
Petko, D. (2012). Teachers’ pedagogical beliefs and their use of digital media in classrooms: Sharpening the focus of the ‘will, skill, tool’model and integrating teachers’ constructivist orientations. Computers & Education, 58(4), 1351-1359.
Polak, S., Schiavo, G., & Zancanaro, M. (2022, April). Teachers’ perspective on artificial intelligence education: An initial investigation. In CHI Conference on Human Factors in Computing Systems Extended Abstracts (pp. 1-7).
Ramdoss, S., Lang, R., Fragale, C., Britt, C., O’Reilly, M., Sigafoos, J., & Lancioni, G. E. (2012b). Use of computer-based interventions to promote daily living skills in individuals with intellectual disabilities: A systematic review. Journal of Developmental and Physical Disabilities, 24, 197-215.
Ramdoss, S., Machalicek, W., Rispoli, M., Mulloy, A., Lang, R., & O’Reilly, M. (2012a). Computer-based interventions to improve social and emotional skills in individuals with autism spectrum disorders: A systematic review. Developmental neurorehabilitation, 15(2), 119-135.
Rivoltella, P. I. E. R., & Rossi, P. G. (2024). Tecnologie per l’educazione. Milano: Pearson.
Rouhi, A., Spitale, M., Catania, F., Cosentino, G., Gelsomini, M., & Garzotto, F. (2019, March). Emotify: emotional game for children with autism spectrum disorder based-on machine learning. In Proceedings of the 24th International Conference on Intelligent User Interfaces: Companion (pp. 31-32).
UNESCO (2017). Educazione agli obiettivi per lo sviluppo sostenibile. Obiettivi di apprendimento. Unesco Eucation 2030, https://www.unesco.it/it/News/Detail/440
UNESCO (2020). Technology for inclusion. Disponibile su: https://unesdoc.unesco.org/ark:/48223/pf0000373655
Venkatesh, V. (2022). Adoption and use of AI tools: a research agenda grounded in UTAUT. Annals of Operations Research, 1-12.
Venkatesh, V., Morris, M.G., Davis, G.B. & Davis, F.D. (2003). User acceptance of information technology: toward a unified view, MIS Quarterly, 27, 3, pp.425-478.
Vidal-Hall, C.; Flewitt, R.; Wyse (2020). D. Early Childhood Practitioner Beliefs about Digital Media: Integrating Technology into a Child-Centred Classroom Environment. Eur. Early Child. Educ. Res. Journal, 28, 167–181.
Vivanet, G. (2014). Che cosa sappiamo sull’efficacia delle tecnologie didattiche con soggetti con disturbo dello spettro autistico?. Form@ re-Open Journal per la formazione in rete, 14(4), 77-92.
Vuorikari, R., Kluzer, S. and Punie, Y. (2022). DigComp 2.2: The Digital Competence Framework for Citizens, EUR 31006 EN, Publications Office of the European Union, Luxembourg, 2022, ISBN 978-92-76-48882-8, doi:10.2760/115376, JRC128415. Disponibile su: https://publications.jrc.ec.europa.eu/repository/handle/JRC128415
Warren, Z. E., Zheng, Z., Swanson, A. R., Bekele, E., Zhang, L., Crittendon, J. A., ... & Sarkar, N. (2015). Can robotic interaction improve joint attention skills?. Journal of autism and developmental disorders, 45, 3726-3734.
Wedyan, M., Al-Jumaily, A., & Crippa, A. (2018, December). Early diagnose of autism spectrum dis-order using machine learning based on simple upper limb movements. In International conference on hybrid intelligent systems (pp. 491-500). Cham: Springer International Publishing.
Zervogianni, V., Fletcher-Watson, S., Herrera, G., Goodwin, M., Pérez-Fuster, P., Brosnan, M., & Grynszpan, O. A. (2020). Framework of evidence-based practice for digital support, co- developed with and for the autism community. Autism, 24(6), 1411-1422. https://doi.org/10.1177/1362361319898331
Zhang, S., Wang, S., Liu, R., Dong, H., Zhang, X., & Tai, X. (2022). A bibliometric analysis of research trends of artificial intelligence in the treatment of autistic spectrum disorders. Frontiers in Psychiatry, 13, 967074.
##submission.downloads##
Pubblicato
Versioni
- 2024-06-25 (3)
- 2024-06-25 (2)
- 2024-06-24 (1)
Come citare
Fascicolo
Sezione
Licenza
Copyright (c) 2024 ilaria Viola
Questo lavoro è fornito con la licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale.