Studio sull'integrazione della visione periferica nell'educazione fisica: il corpo come strumento di apprendimento ed equilibrio negli adolescenti dell'era tecnologica
Parole chiave:
peripheral vision; physical education; cognitive development; motor skills; technology impact.Abstract
Nell'era digitale, i giovani sono immersi in un ambiente tecnologico che limita il movimento fisico e promuove una percezione frammentata, influendo negativamente sull'attenzione e sulle abilità motorie. Questo studio esplora un approccio innovativo, integrando l'allenamento della visione periferica nell'educazione fisica per migliorare sia gli aspetti motori che cognitivi. L'obiettivo è contrastare il fenomeno del "disincarnazione" tipico dell'era post-umana, restituendo al corpo un ruolo centrale. Cinquantasei adolescenti (età media 12,6 anni) sono stati divisi in due gruppi: sperimentale e di controllo. Entrambi hanno partecipato a un programma di educazione fisica della durata di tre mesi, ma solo il gruppo sperimentale ha ricevuto interventi basati sul metodo Sicrony, focalizzati sulla stimolazione della visione periferica. Le performance cognitive e motorie sono state valutate attraverso test standardizzati (TMT-B, SEBT, VST) all'inizio (T0) e alla fine (T1) del programma. Il gruppo sperimentale ha mostrato miglioramenti significativi nei test TMT-B (p=0,003) e VST (p<0,05), suggerendo che l'allenamento del corpo e della visione abbia influenzato positivamente l'attenzione e il riconoscimento visivo. I risultati supportano un approccio educativo integrato che valorizza il corpo nel processo di apprendimento, bilanciando l'impatto della tecnologia e promuovendo uno sviluppo equilibrato. Questa prospettiva posiziona l'educazione fisica come strumento per riconciliare l'esperienza corporea con le interazioni tecnologiche contemporanee, favorendo l'apprendimento.
Riferimenti bibliografici
Alirezabeigi, S., Masschelein, J., & Decuypere, M. (2022). The timescape of school tasks: towards algorhythmic patterns of on-screen tasks. Critical Studies in Education, 64(2), 101–117. https://doi.org/10.1080/17508487.2021.2009532
Ambretti, A., Desideri, G., & Fogliata, A. (2023). Praxeology, inclusion and teaching: a field study. Journal of In-clusive Methodology and Technology in Learning and Teaching, 3(4), 1-11. DOI: https://doi.org/10.32043/jimtlt.v3i4.110
American Academy of Pediatrics (2016). Media and young minds. Pediatrics, 138(5), e20162591. https://doi.org/10.1542/peds.2016-2591
Burnat, K. (2015). Are visual peripheries forever young? Neural Plasticity, 2015(15), 1–13. https://doi.org/10.1155/2015/307929
Cannon, M. W. (1986). Recent advances in understanding peripheral vision. Proceedings of the Human Factors Society Annual Meeting, 30(6), 601-603. https://doi.org/10.1177/154193128603000622
Cohen, K., & Haith, M. (1977). Peripheral vision: The effects of developmental, perceptual, and cognitive factors. Journal of Experimental Child Psychology, 24(3), 407-421. https://dx.doi.org/10.1016/0022-0965(77)90085-6.
Cojanu, F. (2017). New perspectives to develop psychomotor capacity for romanian children from primary school. The European Proceedings of Social & Behavioural Sciences. https://dx.doi.org/10.15405/EPSBS.2017.05.02.174.
De Bernardi F. (2008). Sincrony movements education. Red Edizioni
Exler, A., Voit, A., Weber, D., Pielot, M., Goyal, N., Gehring, S., Okoshi, T., & Pejović, V. (2019). UbiTtention 2019: 4th International Workshop on Smart & Ambient Notification and Attention Management. (pp. 104-109). https://dx.doi.org/10.1145/3341162.3347766
Fogliata, A., & Ambretti, A. (2023). Embodied (Artificial) and peripheral vision. Journal of Inclusive Methodology and Technology in Learning and Teaching, 3(4), 1-9. DOI: https://doi.org/10.32043/jimtlt.v4i1.114
Gardner, H. (1983). Frames of mind: the theory of multiple intelligences. New York: Basic Books.
Gaudino, E. A., Geisler, M. W., & Squires, N. K. (1995). Construct validity in the trail making test: what makes part B harder? Journal of Clinical and Experimental Neuropsychology, 17(4), 529–535. https://doi.org/10.1080/01688639508405143
Jiménez, A. C., Sicilia, A. O., & Vera, J. G. (2007). Improving spatial perception in 5-Yr.-old spanish children. Perceptual and Motor Skills, 104(3_suppl), 1223-1235. https://doi.org/10.2466/pms.104.4.1223-1235
Johnson, L. N., & Baloh, F. G. (1991). The accuracy of confrontation visual field test in comparison with automated perimetry. Journal of the National Medical Association, 83(10), 895–898.
Kayrgozhin, D. U., Aralbayev, A. S., Askarovich, S. M., Amangeldinovna, N. B., & Marat, K. (2022). Developing cognitive independence in high school students through physical education lessons. Cypriot Journal of Educational Sciences, 17(3), 930–941. https://doi.org/10.18844/cjes.v17i3.6988
Kashada, H., Li, H., & Koshadah, O. (2018). Analysis approach to identify factors influencing digital learning technology adoption and utilization in developing countries. International Journal of Emerging Tech-nologies in Learning (iJET), 13(2), 63-79. https://dx.doi.org/10.3991/IJET.V13I02.7399
Kerr, N. M., Chew, S. S. L., Eady, E. K., Gamble, G. D., & Danesh-Meyer, H. V. (2010). Diagnostic accuracy of confrontation visual field tests. Neurology, 74(13), 1184-1190. https://dx.doi.org/10.1212/WNL.0b013e3181d90017.
Knebel, M., Costa, B., Santos, P. dos, Sousa, A. C. de, & Silva, K. (2020). The cnception, validation, and reliability of the Questionnaire for Screen Time of Adolescents (QueST). In SciELO Preprints. https://doi.org/10.1590/SciELOPreprints.1184
Lin, T. T. C., Kononova, A., & Chiang, Y. H. (2019). Screen addiction and media multitasking among American and Taiwanese users. Journal of Computer Information Systems, 60(6), 583–592. https://doi.org/10.1080/08874417.2018.1556133
Lua, Verity Y. Q., Terence B. K. Chua, & Michael Y. H. C. (2023). A narrative review of screen time and wellbeing among adolescents before and during the COVID-19 Pandemic: implications for the future Sports 11, no. 2: 38. https://doi.org/10.3390/sports11020038
López-Plaza, D., Juan-Recio, C., Barbado, D., Ruiz-Pérez, I., & Vera-Garcia, F. J. (2018). Reliability of the Star Excursion Balance Test and two new similar protocols to measure trunk postural control. PM&R, 10(12), 1285-1292. https://doi.org/10.1016/j.pmrj.2018.05.012
Mark, A. E., & Janssen, I. (2008). Relationship between screen time and metabolic syndrome in adolescents. Journal of public health (Oxford, England), 30(2), 153–160. https://doi.org/10.1093/pubmed/fdn022
Montessori, M. (1967). The absorbent mind. New York: Holt, Rinehart and Winston.
Nielsen, H. (Ed.). (2021). Outdoor recreation-physiological and psychological effects on health. Intech Open. doi: 10.5772/intechopen.87648
Onyeaka, H., & Zhang, N. (2022). Excessive screen time behaviors and cognitive difficulties among adolescents in the United States: Results from the 2017 and 2019 national youth risk behavior survey. Psychiatry Research, 316, 114740. https://doi.org/10.1016/j.psychres.2022.114740
Piaget, J. (1952). The origins of intelligence in children. New York: International Universities Press
Pontes H.M. (2021). Critically appraising the pitfalls of screen time effects research. Australian & New Zealand Journal of Psychiatry.55(9):922-922. doi:10.1177/0004867420963736
Sadiku, M., Shadare, A. E., & Musa, S. (2017). Digital education. Journal of Educational Research and Practice, 7(3), 1-6. https://dx.doi.org/10.53469/jerp.2022.04(12).16
Salthouse, T. A. (2010). Cognitive correlates of cross-sectional differences and longitudinal changes in trail making performance. Journal of Clinical and Experimental Neuropsychology, 33(2), 242–248. https://doi.org/10.1080/13803395.2010.509922
Sharma, S. K. (2018). Screen dependency disorders (SDD): an innovative contest for brain of children. Global Journal of Addiction & Rehabilitation Medicine, 5(3). Medicine 6(1). DOI:10.19080/GJARM.2018.06.555677
Srikantharajah, J., & Ellard, C. (2022). How central and peripheral vision influence focal and ambient processing during scene viewing. Journal of Vision, 22(12), 1-14. https://doi.org/10.1167/jov.22.12.4 https://dx.doi.org/10.19080/gjarm.2018.06.555677
Stockley, L. A. F. (1977). Waterworth memorial lecture: a sideways glance, a look at peripheral vision. Clinical and Experimental Optometry, 60(11), 368–380. https://doi.org/10.1111/j.1444-0938.1977.tb02922.x
Wang, L., Li, Y., & Hu, J. (2022). Digital interaction design in the context of natural user interface based on computer science. In Proceedings of the Conference on Human Factors in Computing Systems. https://dx.doi.org/10.1145/3535735.3537770
World Health Organization (2019). Guidelines on physical activity, sedentary behaviour and sleep for children under 5 years of age. World Health Organization. https://apps.who.int/iris/handle/10665/311664
##submission.downloads##
Pubblicato
Come citare
Fascicolo
Sezione
Licenza
Copyright (c) 2025 Arianna Fogliata, Mariapia Mazzella, antinea ambretti

Questo lavoro è fornito con la licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale.